
NAG C Library Function Document

nag_frequency_table (g01aec)

1 Purpose

nag_frequency_table (g01aec) constructs a frequency distribution of a variable, according to either user-
supplied, or function-calculated class boundary values.

2 Specification

#include <nag.h>
#include <nagg01.h>

void nag_frequency_table (Integer n, const double x[], Integer num_class,
Nag_ClassBoundary class, double cint[], Integer ifreq[], double *xmin,
double *xmax, NagError *fail)

3 Description

The data consists of a sample of n observations of a continuous variable, denoted by xi, for i ¼ 1; 2; . . . ; n.
Let a ¼ min x1; . . . ; xnð Þ and b ¼ max x1; . . . ; xnð Þ. The function constructs a frequency distribution with
k > 1ð Þ classes denoted by f i, for i ¼ 1; 2; . . . ; k. The boundary values may be either user-supplied, or
function-calculated, and are denoted by yj, for j ¼ 1; 2; . . . ; k � 1.

If the boundary values of the classes are to be function-calculated, then they are determined in one of the
following ways:

(a) If k > 2, the range of x values is divided into k � 2 intervals of equal length, and two extreme
intervals, defined by the class boundary values y1; y2; . . . ; yk�1.

(b) If k ¼ 2, y1 ¼ 1
2 aþ bð Þ.

However formed, the values y1; . . . ; yk�1 are assumed to be in ascending order. The class frequencies are
formed with

f 1 ¼ the number of x values in the interval �1; y1ð Þ
f i ¼ the number of x values in the interval yi�1; ik½ Þ, i ¼ 2; . . . ; k � 1

f k ¼ the number of x values in the interval yk�1;1½ Þ,
where [means inclusive, and) means exclusive. If the class boundary values are function-calculated and
k > 2, then f 1 ¼ f k ¼ 0, and y1 and yk�1 are chosen so that y1 < a and yk�1 > b.

If a frequency distribution is required for a discrete variable, then it is suggested that the user supplies the
class boundary values; function-calculated boundary values may be slightly imprecise (due to the
adjustment of y1 and yk�1 outlined above) and cause values very close to a class boundary to be assigned
to the wrong class.

4 References

None.

5 Arguments

1: n – Integer Input

On entry: the number of observations, n.

Constraint: n � 1.

g01 – Simple Calculations on Statistical Data g01aec

[NP3660/8] g01aec.1

2: x½n� – const double Input

On entry: the sample of observations of the variable for which the frequency distribution is required,
xi, for i ¼ 1; 2; . . . ; n. The values may be in any order.

3: num_class – Integer Input

On entry: the number of classes desired in the frequency distribution, k. Whether or not class
boundary values are user-supplied, num_class must include the two extreme classes which stretch to
�1.

Constraint: num_class � 2.

4: class – Nag_ClassBoundary Input

On entry: indicates whether class boundary values are to be calculated within the function, or are
supplied by the user.

class ¼ Nag_ClassBoundaryComp

The class boundary values are to be calculated within the function.

class ¼ Nag_ClassBoundaryUser

They are user-supplied.

Constraint: class ¼ Nag_ClassBoundaryUser or Nag_ClassBoundaryComp.

5: cint½num_class� 1� – double Input/Output

On entry: if class ¼ 0, then the elements of cint need not be assigned values, as the function
calculates k � 1 class boundary values.

If class ¼ 1, the first k � 1 elements of cint must contain the user-supplied class boundary values, in
ascending order.

On exit: the first k � 1 elements of cint contain the class boundary values in ascending order.

Constraint: if class ¼ 1, cint½i� 1� < cint½i�, for i ¼ 1; 2; . . . ; k � 2.

6: ifreq½num_class� – Integer Output

On exit: the elements of ifreq contain the frequencies in each class, f i, for i ¼ 1; 2; . . . ; k. In
particular ifreq 1ð Þ contains the frequency of the class up to cint 1ð Þ, f 1, and ifreq½k � 1� contains
the frequency of the class greater than cint½k � 2�, f k .

7: xmin – double * Output

On exit: the smallest value in the sample, a.

8: xmax – double * Output

On exit: the largest value in the sample, b.

9: fail – NagError * Input/Output

The NAG error parameter, see the Essential Introduction.

6 Error Indicators and Warnings

NE_BAD_PARAM

On entry, parameter class had an illegal value.

NE_INT_ARG_LT

On entry, num_class must not be less than 2: num_class ¼ valueh i.

g01aec NAG C Library Manual

g01aec.2 [NP3660/8]

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_NOT_STRICTLY_INCREASING

The sequence cint is not strictly increasing: cint½ valueh i� ¼ valueh i, cint½ valueh i� ¼ valueh i.

7 Accuracy

The method used is believed to be stable.

8 Further Comments

The time taken by nag_frequency_table (g01aec) increases with num_class and n. It also depends on the
distribution of the sample observations.

9 Example

In the example program, nprob determines the number of sets of data to be analysed. For each analysis
the sample observations and optionally class boundary values, are read. After calling the function the
calculated frequency distribution and largest and smallest observations values are printed. In the example,
there is one problem to be analysed, with 70 observations to be grouped into 5 function-calculated classes.

9.1 Program Text

/* nag_frequency_table (g01aec) Example Program.
*
* Copyright 2000 Numerical Algorithms Group.
*
* Mark 6a revised, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg01.h>

int main(void)
{

Integer exit_status=0, i, iclass, j, *jfreq=0, n, nprob, num_class;
NagError fail;
Nag_ClassBoundary iclass_enum;
double *a=0, *c=0, xmax, xmin;

INIT_FAIL(fail);
Vprintf("nag_frequency_table (g01aec) Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

Vscanf("%ld", &nprob);
for (i = 1; i <= nprob; ++i)

{
Vscanf("%ld %ld %ld", &n, &iclass, &num_class);
if (!(a = NAG_ALLOC(n, double))

|| !(c = NAG_ALLOC(num_class-1, double))
|| !(jfreq = NAG_ALLOC(num_class, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
for (j = 1; j <= n; ++j)

Vscanf("%lf", &a[j - 1]);

g01 – Simple Calculations on Statistical Data g01aec

[NP3660/8] g01aec.3

Vprintf("Problem %ld\n", i);
Vprintf("Number of cases %ld\n", n);
Vprintf("Number of classes, including extreme classes %ld\n",

num_class);
if (iclass != 1)

Vprintf("Routine-supplied class boundaries\n\n");
else

{
for (j = 1; j <= num_class-1; ++j)

Vscanf("%lf", &c[j - 1]);
Vprintf("User-supplied class boundaries\n");

}
if (iclass == 1)

iclass_enum = Nag_ClassBoundaryUser;
else if (iclass == 0)

iclass_enum = Nag_ClassBoundaryComp;
else

iclass_enum = (Nag_ClassBoundary)-999;
/* nag_frequency_table (g01aec).
* Frequency table from raw data
*/

nag_frequency_table(n, a, num_class, iclass_enum, c, jfreq, &xmin, &xmax,
&fail);

if (fail.code == NE_NOERROR)
{

Vprintf("Successful call of g01aec\n\n");
Vprintf("*** Frequency distribution ***\n\n");
Vprintf(" Class Frequency\n\n");
Vprintf(" Up to %8.2f %11ld\n", c[0], jfreq[0]);
if (num_class-1 > 1)

{
for (j = 2; j <= num_class-1; ++j)

Vprintf("%8.2f to %8.2f %11ld\n", c[j - 2], c[j - 1],
jfreq[j - 1]);

}
Vprintf("%8.2f and over %9ld\n\n", c[num_class - 2],

jfreq[num_class-1]);
Vprintf("Total frequency = %ld\n", n);
Vprintf("Minimum = %9.2f\n", xmin);
Vprintf("Maximum = %9.2f\n", xmax);

}
else

{
Vprintf("Error from nag_frequency_table (g01aec).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
}

END:
if (a) NAG_FREE(a);
if (c) NAG_FREE(c);
if (jfreq) NAG_FREE(jfreq);
return exit_status;

}

9.2 Program Data

nag_frequency_table (g01aec) Example Program Data
1

70 0 7
22.3 21.6 22.6 22.4 22.4 22.4 22.1 21.9 23.1 23.4
23.4 22.6 22.5 22.5 22.1 22.6 22.3 22.4 21.8 22.3
22.1 23.6 20.8 22.2 23.1 21.1 21.7 21.4 21.6 22.5
21.2 22.6 22.2 22.2 21.4 21.7 23.2 23.1 22.3 22.3
21.1 21.4 21.5 21.8 22.8 21.4 20.7 21.6 23.2 23.6
22.7 21.7 23.0 21.9 22.6 22.1 22.2 23.4 21.5 23.0
22.8 21.4 23.2 21.8 21.2 22.0 22.4 22.8 23.2 23.6

g01aec NAG C Library Manual

g01aec.4 [NP3660/8]

9.3 Program Results

nag_frequency_table (g01aec) Example Program Results

Problem 1
Number of cases 70
Number of classes, including extreme classes 7
Routine-supplied class boundaries

Successful call of g01aec

*** Frequency distribution ***

Class Frequency

Up to 20.70 0
20.70 to 21.28 6
21.28 to 21.86 16
21.86 to 22.44 21
22.44 to 23.02 14
23.02 to 23.60 13
23.60 and over 0

Total frequency = 70
Minimum = 20.70
Maximum = 23.60

g01 – Simple Calculations on Statistical Data g01aec

[NP3660/8] g01aec.5 (last)

	g01aec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	n
	x
	num_class
	class
	cint
	ifreq
	xmin
	xmax
	fail

	6 Error Indicators and Warnings
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_NOT_STRICTLY_INCREASING

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

